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Notation and basic relatlions

mass density of fluid

P
v specific volume ='%
P static pressure
R gas constant (defined for unit mass)
T absolute temperature
Cp specific heat at constant pressure (for unit mass)
Cy specific heat at constant volume (for unit mass)
h enthelpy = CpT (defined for unit mass)
T2
ASqp change in entropy = [‘ %?
dTl
m mass
J mechanlical equivalent of hesat
v ratio of specific heats at constant pressure and
constant volume
B modulus of elasticity
Q added heat energy per unit mess
W work'done-by external forces on unit mess
X,y rectangular coordinsates
1= VT
complex varisble = x + 1y
. o velocity potential
v sfream function
u,v components of fluid velocity parallel to rectangular

axes of x and ¥y (redef;ned for polar coordinates)
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= Qﬂ; v = - o)
pu Po o= p Po ox

w resultant fluld speed in two dimensions, w2 = ul + v2,
also component;of welocity in direction of 'z—
axis in three dimensions

) - angle between résultant fluid velocity and x - axis

u=wecos 6; v=wsinb

Yo maximum speed which can be attained by fluid = speed
when p=o0, p =0, and a = o

v nondimensional speed variable-ra.f;-:;)zo <1<l

a 1oca1‘speed of sound N

M Mach number = ¥

P pressure coeff;cient ='%f

S area normal to direction of flow

q dynamic pressure, %pw2

g acceleration of gravity

t time

o, = %g; Oy = %zg; Oxy = :;Z;O etc.: alsb<72m-f-§§§ + %sg

Poiar coordinates

r,9 polar coordinates of point

u,v velocity along and perpendicular to radius vector

) respectively u = - %.9; v = - % %%
) | velocity potential (defined by above equations for

polar coordinates)
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w angular velocity

a angular acceleration

Subscripts

o} stagnation point

8 ffee stream

l local point in flow

t throat section (minimum cross section)
i incompressible flow

nm maximum value of variable

cr critical value of variable (defined in text)
1,2 any two values of the variable

No subscript, any point in the flow
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Therrodynamic relations

1. General ggs law
pV = RT (where 'R is defined for unit mass)

2. Heat transfer at constant preséure or volume (specific
heats)
(a) At constant volume: dQ = CymdT

(b) At constant pressure: dQ = Cpde = Cvde'+E!iQ£11
J

3. Expressions involving specific heats and general gas
- law (enthalpy)
(a) ¢

T

Cy Jcy’

- C. =R
p v J

we

ol
"
_(

v D)

- vV
(¢c) CpT = C,T + %F

(d) h = C.T = enthalpy

b
() h=_RBT +pV=_2»V ,pVv
J(v-1) 8) J(y-1) J
(f) h=_¥_P: ormh=_%Y "L (for mass m; h =
Y-1 pJd Y-1 pJd enthalpy for unit
mass)

.. General energy equation
(a) Equation in differential form
2
ndJCydT + mpdV + mdW + mJdQ + mgg— = constant

(b) Integrated expression for unit mass

~
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: w2 , "2°

2
w
or Jhl+W+JQ+—-:éL—-=Jh2+E..

(c) Energy equation for adisbatic flow (W = 0)

2 Wol
Wy 2

Jh., + —=_ = =<
1 > Jhy + =3

(d) Energy equation for adiabatic flow involving
stagnation (wg = 0)

Jh +‘EE

Jho = >
or w2 = 23(h, - h)
2 —
and Whax = 2Jho
— - Y-1

or _'t..fﬂ:._‘f_2+w2
P

6. Other useful relations

(a) Adlabatic temperature rise

H I H L L EBE E L L L K LK B O n EkE L L
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P
(b) Intrinsic energy of unit mass = work done

against external pressure when gas 1s expanded

adiabatically to zero density:

st

4
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Veloeity of Sound in Air
1. Methods of derivation

(¢ Derivation by momentum considerations in one

dimension and elastlc bar analogy yields

N

(b) Reduction to the general wave equation im one

dimension
62u = a2 8%
6t2 6x2
define
efines 2 = dp
dp

2. The verious expressions for the velocity of sound

(a) Substitution of the bulk modulus

E = pgﬂ in 1(a) lzads to
o

2% = a2 as in 1(b)

d
(b) For the adisbatic process 4P _¥P
a ~ p-
and

- Y_“

s
{c) Por the isothermal process '%3 = %

P

and

= /P
a \/p

H L E L Lk L L L L B L M A o kB L L L '




-8 -

(d) From 2(b) and the general‘ gas law pV = RT
a = RT
Expressions relating the velocity of sound at several

points in the flow (adiabatic process).

(a; Equation relating any two points on a streamline

Y-1
o (3_1_‘2*
8 Py,

(b) Equation relating local and stream points

a D y-1 Y-1 3 w. 2\ 4
1 1 —- 2 2Y _ v-1 1
= [ 2}2Y = {XpM + 1 =11 + X4ty 2/ _L})|e
( ) (2 ° 2 o "'s2

(c) Equation relating stagnation and stream points

1
2
a -
-9- - 1 + I__]'.M 2)
ag 2 8

(d) Equation relating throat and stagnation points.
Combination of the condition for sonic veloclty

|

. Y
p ! PR,
—P— ‘k—a—)‘f-l with the adisbatic relation

Py T+l and 2(b) yields e
1

8 _ /7 21\2

a8, \ +1 /

0 N M E L kK I L K LK KB LKL M I O B &k A
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(e) Equation relating throat and stream points

1 1
2t _é.)afl,,f{:_l. 2)°
ag - Y+1] | 2 Mg

. Velccity of sound in terms of the maximum attainable

veloclity
8, = _m
vy-1
and a, = Wp/Y-1
t vyl
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Systems of Coordinates and Transformation Equations

- _ 1. Complex variable and potential function
z=x+ 1y = r(cos 8 + 1 sin 8)

the complex coordinate of P(x,y) 1is given by
. Py y

R AN PO 19
— 2= re
LT p 3
The potential function f(z) = o+ 1y permits. repre-
sentation of any 1lrrotational motion in ey one

equation and has the property ar(z) = u - iv
' dz
2. The Joukowski transformation

The relation §.= z + 5; maps the circle of radlus a
with its center at the origin of the 2z plane into the
line segment (-2a, O0; 2a, 0) in the { plane. The circles
concentric with the circle of radius a are transfornmed
iInto a family of confocal ellipses with cormon focil at
(-2a, 0) and (2a, 0). If R(>A) denotes the radius of one
of these circles, then the semimajor and semiminor axes of

the ellipse into which it is transformed are, respectively;

R +'%; and R - %r; the thickness ratio becomes

-

. 2
a
t-_-R.‘ﬁ-:l-Gz. c= 2
2 2’ TR
. Rla 1+g
R

d I UJM LB L L L L L I E L MM B LI E A &

L.

|



- 11 -

By displacing the center of the circle, & whole éeries
of airfoll shapes are obtained (Jdukowski profiler) and the
corresponding velocity and pressure distribution can be
calculated.

a. (a)' Legendre contact transformation for two

independent variables

X=0 =u
b4
Y= 0. =
N Qy '
i= T + myy -~ 0= ux + vy < ¢

The surface ¢ = o (x,y) goes over into the

surface

.

&
.

¢ _ Y
x =% X,Y)
(b) By means of the previous transformation, the

equation for the velocity potential in the

rhysical plane

e 2 o2t 0,0, _ .
@xx(l-_x_).,cpyy(l-_zi)-mxy_x_z_o

\ .a a2

is transformed into the hodograph equation

/

Y 1wyt L2y wr.
i ! 2) +,.Auu \1 - -;-2- + 2“11\7 a2 0

» O M B L LK L L LKL L K LKL H O O E & L
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Equatiomsof motion

component of velocity in
z direction)

i

1. Euler's equations (w

|
+
=
l
+
+
u
ke
|
o
5144

Qv v vév dv
- ot ox oy 0z

+
=
+
I
+
3
|
"
<
1
el
ity

ow ow VQE ow
ot ox oy o2z

+
o
l
+
+
]
l
H
N
1
ol
0«‘0'
R e}

Where X, Y, and Z are the components of extraneous
forces per unit mass at point x, y, z at time ¢.
2. Lagrangian forms of the dynamical equations

By use of the Lagrangian equations

ﬁ:x_l‘..@
at2 P dx
ﬁ:y,i&
NE P oy
¥y 19
Yl k>

Where a, b, and ¢ are initial coordinates of any
particle of fluidr{hence a, b, ¢, and t are the independent
variable%} There are obtained the following forms of

EBuler's equations:
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(2x L\ 2x, fé_a;z_aézﬁg (6_2.3_2}.61.2.+.1..6_2=0
b2 ~ T Qa 1542 da  \at da P da
'%-Qm+@ﬁ_qQ+Gi_%a+;gzo

ol i
o/
o)

l
il
o

(.@_2_’5-){ Q§+(é§1-y).b.l+ .5_2.?._2)9_%4-._
oc at2 oc

3. Equationsof motlon for two dimensional steady motion

in polar coordinates

op

/odu, vou vl 1dp
r ©r 08 r P Oor

%

N e s,

(a)

3
b dv v dv , uv

a - o
\USr 88 T T TP ros

rob

ol

By means of the relatioms vV = wr, %f-= u, and

I,/ a - bw

ot

the equations 3(a) become

(v) du 2_ 18
Y § -
2w + rg = - 2 OP

P rdo

Where %% is the time derivative of the velocity as

the particle moves along a streamline and %B is zero at
' t

any fixed point in the flow (steady motion condition).
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li. Equertion of motion 1in one dimension with no extraneous

forces (X =Y =2 =0).

in which p 1s a unique function of p
5. The Bernoulll equation
A, Differential forms
(e) Simplification of Buler's equations by considering
one-dimensional steady motion with X =Y =2 =0
yields

dp +wdw =20
)

4

where flow in a stream tube 1s considered and w 1s the
magnitude of the resultant velocity as defined under
notation.
(b) Differentisl equation expressed in terms of
"velocity of sound
a2 9P +wdw =20
o]
or 2. ada+wdw =20
Y-1
B. TIntegrated forms of the Bernoulli equation

(c)- Genereal Bernoulll equstion for compressible flow

. p w2‘ P Wol
-~ _1 + e S = X —3 + _2_ = constant
Y-1 Pl 2 Y-1 PZ 2

lin B E LU LB K LE L L H‘R M 1 H E A Lk FR '
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Py 2\ a2 ‘ ! 21 Vo Wyl

(d) Critical pressure ratio or pressure ratio corres-
ponding to attaimment of sonic velocity at some
point in the field of flow (equation 5(c¢)
expressed in terms of loéal and streari conditions

for a local Mach number of unity)

¥ Y
p 7 Y-1 / Y-1
2L Y-1 2} (2 \Y
= \1 M ’Y+1\.
s / \
(e) Equations relating pressures at stagnation point

and any other point along a streamline

, . 2
2= i1 ..Y:..]:.Ma Y-l
b t i
or - ¥
| Y -
(f) The compressibility factor
Ir ' _
Y-1 / iz \
“é"‘MZ< 1l !\OI‘ M <'\_/’?:I)’
- ) 5(e) may be expanded in a binomial series

p. =p + _]_-_pwa ‘1 + X M2 + 1(2-v) Mh' + 1(2-7)(3"27) :':6 + .
© 2 !__ 212 - 3'22 ' L:23

[ ] *
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3
i

and with ¥ = l.li, the compressibility factor

F:po-p
1
il
becomes

1+ ﬁma + ﬁBMh+ . e

(g) Expressions for the velocity at any point along
a streamline

Upon integration of 5(b) there is obtsined

w2 = _2 (%2 - 32)

- Y-1
onr -.......——‘?-—i
wW=aqQ /-g—- ’:1 - —B- Y .
O~/ vl - / po

(h) The maximum attainable velocity is given by
(expansion to zero pressure)

2

2 = 2Y P+ w2 =28 4 2
woe = we = £E2_+ W
m¥-Iop Y-1

(3) The Bernoulli equation in pressure coefficient

form
P, - Pg . | 2 — 5
o i L Rl S s
; \
Epsws Yig<i- 2 Ws / ~ s
. (k) Expression for velocity ratio in terms of pressure-

coefficlent and stream lMach number

B I B E L L L L K L K K H D O BB L
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/ . Y1 4
w .
1 p 'Y i
== /1- ({1 + XpM, <" - 11|
Ys o [ (redusE | ( e ) K
and "cr\2 =2 1 _x-1

Wy } Y+1.M82 Y+1
where Wop = 8y (or M; = 1)

(1) Expression for locel Mach number in terms of stream

Mach number and pressure coefficient

= [Ms T ¥T\8 Y )
l
Y-1

; ¥
Y B
where g =1 + % PMS2

(m) Expression for acceleration along a streamline

(one-dimensional steady motion)

incompressible flow

compressiblé flow

. 2, 1
dw Vs 2\ ¥ 4p
. S =1 2.1 + XpM =
at 2 | 2”8) ax

(n) General expression for the acceleration of a

fluid particle (two-dimensional steady motion)

K J § j 41 ) *1 L &) L L f 53 L A ia M i n F*4 A A
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i_;_ (g_% - I‘wz)" g—;‘-l-r - u + %{ra + 2wu\)— rg%)- =0
The above expreséion is obtained by combining the
. ’ expressions for radial and transverse accelerations
(equations3(b) page 13) with the equation of
continuity (equation 3 pagel9 ).

(o) Explicit form of the general expression for the
acceleration of a fluid particle (two-dimensional
steady motion).

If a reference system is chosen so that the radial

component of acceleration is zero, the general

expression for acceleration may be written

> ou
Acceleration = ¥— 3T
Wl

(5 -1

6. Conditions for irrotational motion

(a) Equation in rectangular coordinates (two dimensions)

ov  ou _
3x oy _ 0
2 2
or oW, 8T¥ _ g4 (V2y = 0)
: dx2  ay° |

(b) Equation in polar coordinates

HF?
(e %
@
i
O

2w + p

bw—
L3

N I M K I B L L K B N L H B u 2 £ &
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VI
Equations of continuity

1. Euler's form

dp , o(pu) ., d(pv) ., d(pw) _
SEY~ox Y7oy YTz =

(a) For steady incompressible flow

0

ou ., dv . ow _
53+6_§+55"0

(b) For one-dimensional motion
2. Lagrangian form (equation of continuity at time, t)
O(x z) =p Where = initial density at int
PaarbeT = Po Po nsity at po
a,b,¢c (as defined under equations of

motion).

"(a) For an incompressible fluid

d(x,y,2) _
d(a,b,c) 1

3. Polar form for two-dimensional steady motion

dpur) . d(prw) . . dpur). dpv) _
st Y Toe - T Oor =7t 5= 0

L. The continuity conditions within a stream tube are
defined by:
pwS = constant (steady.motion.condition)
5. In two-dimensionel steady motion, the continuity conditions

at a fixed point in the flow plane are given by

U M B K LI M LK L L LK I L U H I L LK L L
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d(pu) , d(pev) _
5x T~y — O

6. By differentation of Il there is obtained:

%? + %; + %E =0
(a) At minimum section 4S8 =0
hence: dw = - ap
w P

(b) Substituting in Bernoulli's equation there is ob-

tained the condition for maximum mass flow:

Wt =Ep = at

Hence the velocity at the minimum section is

equal to the local velocity of sound.

H M L LK L L L L L LKL Lk L
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VII

Combination of the Equatlons of Motion and Continuity

l. Differential equations

2. Stream tube area ratios

§_S_=_G_.§I-_BY
8 1
‘y-1\°
'\—2“) My
where
and
p
p=1+Xpe=_1
2 S P
o8

3. Mass flow per unit time through a stream tube or

convergent-divergent nozzle

/ > i 2 Y+17
m=s/2__'\’___0_ /.B..\Y ‘ k3
NY-1 vy \ 0, )

L. Pressure ratio for maximum mass flow
By differentiation of (3) there 1s obtained the condition

for maximum mass flow

M M L L L L L L L H R K E H B K LE i L
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Y
P _ 2 ‘\Y'i
. Py Y+l

5. The maximum mass flow is

/ Y+
— P 2 \Y-1
! 0
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. VIII

Pressure Coefficient (expressions for)

1., Definition

2. Pressure coefficlent in terms of velocity ratios

(a) Incompressiﬂle flow

(b) Compressible flow

_ Y
2 2 s T2
Mg2 weS ™

- - "'}
+W \2 ' 2 2
or P=‘1’- l ’Hf_s_ 1-("_7»>
] L

\ws) i s

3. Pressure coefficient in terms of pressure ratios

-

Pz

o"im

i
l
l

(a) P

L
%

'dlm

(b) In terms of local and stream pressures
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(¢) In terms of local and stagnation pressures

Y —

li. The maximum negative pressure coefficient

(pressure coefficient for p, = 0)

2
P = -
m YMSZ

5. Critical pressure coefficient or pressure coefficient
corresponding to attainment of local speed of sound

at some polnt in the field of flow

o .
P VPR - R
P I R
A
i

g
|
|
!

\ 1
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Subsonic Two-Dimensional Compressible Flow

- A. Solutions in the physical plane

1. Equations for the velocity potential

(incompressible flow 02 , o2 = 0)
0x2  dy?

For two-dimensional compressible flow

(a) o, (1 - 2= ) +cpyykl -8l X T =0
\ al / az, / aL y
or
\ / ‘.
igye \ 2 \
a - [ a \ -
(b) f—l— -n e g2in + 2t 2 52 - - - — =0
tag?  ® N ag Ys VZEOYY 5™ Px Oy Oxy
Y / i\
\ / \ ,
where ; .
- Cxx
7. =2 5 = u = 2
x - W’ Cxx %I and u W etc.
Yy 8
or _ _
; !
2 far 2 211
(c) {bxx + @yy} 2ag< - (Y-l)sz - wg }é
\ b -
2
= e

x 3x T %% 3y
No general solution has been obtained for subsonic flow, but
these equations have been solved completely for special

- problems in supersonic flow.
2. Prandtl obtains an aép?oximation for thin bodies at

low Mach numbers by assuming

v, << ul<a7. or u; = uy, and a; = a4
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(2) Imposing these conditions on equation 1(a) there

is obtained

!/ Y
/]y 2] -

A3

(b) For incompressible flow in the same coordinates

Txx + Oyy = 0

(c) Applying the transformation ¢ = x and n = Y12

to 2(a) there is obtained Oz + Opn = 0 which

™
is 2(b), the incompressible case. It is found

that the effect of compressibilitylis to expand

the ficld of flow in the ratio .3 and
. AVA S i} .

to increase the induced velocity ratios by the
same factor ., Since the body is assumed thin
~and the induced velocitles therefore small, the

pressure coefficient , P \alsolwill vary with

Mach number according to Vfl_M2

3. Equation 1(c) in polar coordinates

20 2 - (v- 2 . 2—5, = Oo dwp@ 1 dp Owe2
(21 ¥ ?Lzas W T - )_J 3r or ' L2 86 30

i. Method of Rayleigh and Janzen

A first approximation to actual flow conditions is
obtained from the incompressible case §720 = 0. Using
particular solutions of V 2’ = 0 of type @ = r™ cos ng,
the right haﬁd side of 3(a) can be calculatedkas a function

- -
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of r and 6 = F; this method is repeated for higher

approximations.
Second approximation

.2
j @ =_L_P(r,s) ete.

2a82

5. Hethod of Poggi (NACA T. R. No. 62l)

Poggl considers compressible flow to be replaced by
an incompressible flow due to a distribution of sinks and
sources throughout the region of flow.

Strength of distribution in the plane of the profile

-] om 6w2f
e B\PE 8T T o om0

and 1n the plane of the circle into which the profile is

mapped
1 dw? v dwe\ R
u - - = 2 d\ ds
0 ;
-LUT&LZ( A A &8 ) A

where r and 6§ are the polar coordinates in the plane of
the circle, R sand 6 =are the radius of the circle into
wpich profile is mapped and the angular coordinate on this
circle  respectively. (k = g’ v = - %% and u = - % %% » and
w 1s the magnitude of the velocity in the plane of the
profile.

The total induced velocity at any point P(R, 6) of
the circular boundary by foregoing system of sources and

sinks .is

rrv
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:". . 1 ?i;" 2?{ u bwz - X évJa B
aw=21 1 TN, - 5— sin (9-6) A ds
2 o o 87,2 \ -2\ cos (g=8) + A~

kY

4

As the first approximation Aw is obtained from the sub-

stitution in above expression of incompressible values of

v, u, and W2.

then

w = w + Aw
comp. incomp.

With the simplification a the expression

= a
local stream’
for Aw becomes

Flopam w? v oawl

U = =
= Loy A\ 36 sin (8-6) d\ d8
2rag? o o1 - 2\ cos (p-5) +AZ

6. Method of Kaplan

In a recent paper, Kaplan has succeeded in obtaining
a solution in the form of a series in t(thickness ratio of
body) which is accurate for fairly thick shapes up to stream

Mach numbers of unity; he obtains a solution exact in Ms

whereas Poggl gets a solution in the form of a series in Mg

which is exact in t(thickness ratio of body), Poggi's
method 1s slowly convergent in Mg, and hence, since we are
almost slways interested in high.speed flow about bodies for
which t < 0.3, Kaplan's method is superior. This method

establishes a limiting value of the negative pressufe coefe

ficient for each Mach number (see fig. VIII b).
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Solutions in the Velocity Plane

The hodograph method
1. Introduction (as given by Temple and Yarwood)

The hodograph method due to Molenbroek and Chaplygin
is a method of constructing steady irrotational two-
dimensional fields of flow of compressible fluids in which
the pressure is a prescribed function of the density. In
particular it is applicable to adiabatic or 1isothermal flow,
and, in the éase of adiabatic flow, it is applicable to both
subsonlic and supersonic conditions. The great advantage
of the hodograph method, is that given a steady irrotational
field of flow of an incompressible fluid around prescribed
boundaries, 1t determines exactly a field of compressible
flow around boundaries of approximately the same shape.
Thus, given the incompressible flow around an airfoil, the
hodograph method determines the compressible flow around an
airfoll of approximately the same form.

The -hodograph method suffers, however, from two
disadvantages: In the first place, the boundaries in the [
field of incompressible and compressible flow are not
exactly the same.  The boundaries In the compressible flow
are slightly distorted by an amount increasing with the
Mach number in the main stream. In the second place,
the field of compressible flow 18 not given in a form

suitable for numerical computation. The epressions
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obtained for the’velocity poctential and stream function are
exact but they are in the form of en infinite series which

cannot be easlily summed analytically or numerically.

-

2. Genersl hodograph equations
{(2) Equation obtalned from expression for ¢ 1in the
physical plerie by means of the Legendre contact

transformation for two independent variebles

B [ Y
¥ ( u2) } ( ve )
/t; 1 -« 2| + 1l - X} + Z/W.uv s =0
vv Y a2 uu 82 a2

where
,§= X0p ¥ Yﬂy =@
(b) General hodograph equations for a two-dimensional
compressible gas.

From the defining expressions

dm + i(gg)dw = (udx + vdy) + i{udy - vdx) = we -15 dz

p

and the condition

sz = 3%z
o6ow owd b

there are obtained the general hodograph equations for a
two-dimensional compressible gas

(P,
m = w2\ v
w o}

pr)w

_ (8
% ~ (T) i
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X

(c) Hodograph equations for adiabatic flow

in tefms of

Y
vy A
21101 o, = -1 (1;_;.;] "

1
(1-1)¥-1 V5 = 2T Y

il

(d) Defining expressions for ¢ and v

(obtained from equation 1(c))

r Y+11
N x M%:- y 1- (7o)t 83y
‘ ot Lo°Ty b Y 862
!(1—1’)‘-1 ‘ T(l-T)Y'fl
Y L
O |- [ e 1 -7 T B¢
o1 1_(:11\7 oT L T 352
A1
i
| S

3. The von Khrman solution

Simplification of 2(c) by replacing the adiabatic
(Pl‘ _ !Pl)!
pa) (pz

- - _1_ - 1
P, - P, c( -.—)

relation

by

P Py

E L L L
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x

where ¢ 1s chosen so that both relations are tengent at
point pg , P (free stream) leads to the Von Kérman-

Tsien approximating relation

P
P o= — 4
2.
> 152 P
1-u 2 + /HS..‘ 1
2{1+ Vl-Msa)

ly. Temple-Yarwood solution
A"test possible approximation’to the solutién of the
hodogranh equations is glven by Temple and Yarwood; the

relation between P and Pi assumes the form

I -
/ I {
J :

2 /’ 1 2 é | | f ﬁ Msz\
P = + S(y-1)M_ < ¢1 - (1 - P) |31 -
YM 2 ! 2 8 : ; ‘ 1., 2
S 1 ) : l"'- I'IS
\ o | L ?
N PR ) -
[7 00 2
cos %(ﬁ+€) 1 i - >
' Do THg
cos € ;//
where
cos€e =
and
\ 0° < ¢ < 90°
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z

It is to be noted that in 3 an approximation to the actual
flow conditions 1s made while h approximates, with known
accuracy, a mathemgtical expression of the exact solution.

The results of Temple's paper are presented in several
figures, the first of which gives the value of the velocity
ratio at any Mach number for a given low-speed (incompressible)

veloclty ratio.
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Ar. Hydraulic Analogy of Two-Dimensional Compressible Gas Flow

. as Presented by Preiswerk and Others

In this section the enthalpy or heat content h 1is

replaced by 1 = CpT eand h denotes the water depth at

any point; also, Cp is defined for unit weight of fluid
and hence g must now be retained.
1. Physical requirements

Smooth water flow with free surface over a horizontal
bottom, side boundaries vertical.
2. Energy considerations

(e) EBEquation for water

we = Zg(ho-h)
and

w, =./2gh

n 0

(b) Equation for gas
2: - - -
w 2g(1,-1) 2gcp(To T)
and

m S/ Zgio

where Cp and 1, are defined for unit weight

of fluid
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Continuity considerations

(2) Equation for water

dlhu) = d(hv)
ox * sy ~-0

(b) Equation for gas

aew) | alev) _
ox oy

Hence for identical expressions

Py \

the above conditions require ¥y = 2.

L.

The velocity potential
(a) Differential equation for velocity potential of

the water flow

AR = fh - Oye \ Pxy
...____ L -2@@ XY =0
Q":ecx(\l ) Yy \\ " &) gh
(b) Differential equation for velocity potentiel of

two-dimensional compressible gas flow

Ox2 o). Oy _
ool 52) oy (- %) ey

! a
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The complete hydraulic analogy may be swmarized as

5.
follows:
Two~-dimensional Liquid flow with free
gas flow surface in gravity
field

Nature of the flow Hypothetical gas Incompressible fluid
medium with v =2 (e.g. water)

Side boundsaries Side boundary wvertical, V
geometrically bottom horizontal .
similer

Anelogous megnitudes Velocity ¥ ¥  vyelocity 2 ¥

Woax 8 Wpex 2 | i
Terp. ratio L. Water depth retio I
- T h
o}
Density ratio L.  Water depth ratio L
po ho
Pressure ratio B Square of water depth
p
° ratio (lL\z
b, )
o
Pressure on the Force on the verticsal
side boundary walls
p — ==
o
= (=) [

Sound velocity =a Wave velocity vgh

Mach number _W_

lMach number W
a @H

Subsonic flow Streaming water

Supersonic flow . Shooting water

Compressive shock Hydraulic jump
(right and slant) (normal and slant)
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An Electric Analogy of Two-Dimensional Compressible Flow

"Through three short notes by Riabouchinsky and
Demtchenko in the Comptes Rendus of the Paris Academy, 1932,
an 0ld work by Tchaplygin written in the Russian language
in 1904 became known, wherein it wes shown that, for the case
of two-dimensional flow, the problem may, by transformation
to new coordinates (rectangular or polar), be presented in
such a form that a potential flow between two plates at a
predetermined variable distance apart, may be represented
by an electric flow in an electrolyte of variable depth.

One coordinate Z will be a function of the ratio of the
local velocity to the maximum (which may naturally also be
written as a function of the ratio of the denslty to the
maximum density); the other coordinate, g , is the direction
angle of the velocity of the flow, the variable distance
between the two plates being 2 function of the first

coordinate only."

]
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